Title: | Item Focussed Trees for the Identification of Items in Differential Item Functioning |
---|---|
Description: | Item focussed recursive partitioning for simultaneous selection of items and variables that induce Differential Item Functioning (DIF) in dichotomous or polytomous items. |
Authors: | Moritz Berger |
Maintainer: | Moritz Berger <[email protected]> |
License: | GPL-2 |
Version: | 3.1.6 |
Built: | 2025-01-24 03:25:49 UTC |
Source: | https://github.com/cran/DIFtree |
The data set is simulated from a Partial Credit Model where some items exhibit differential item functioning. Existing differences in item difficulties are simulated by step-functions. The true, simulated DIF structure is described in Bollmann et al. (2017), Section 4.3.
data(data_sim_PCM)
data(data_sim_PCM)
A data frame containing 500 observations on 4 variables:
Y matrix with categorical responses (3-point scale)
x1 binary covariate
x2 ordinal covariate
x3 numeric covariate
Bollmann, Stella, Berger, Moritz & Tutz, Gerhard (2018): Item-Focussed Trees for the Detection of Differential Item Functioning in Partial Credit Models, Educational and Psychological Measurement 78(5), 781-804.
data(data_sim_PCM) Y <- data_sim_PCM[,1] X <- data_sim_PCM[,-1] apply(Y,2,table) summary(X)
data(data_sim_PCM) Y <- data_sim_PCM[,1] X <- data_sim_PCM[,-1] apply(Y,2,table) summary(X)
The data set is simulated from a Rasch model where some items exhibit differential item functioning. Existing differences in item difficulties are simulated by step-functions. The true, simulated DIF structure is described in Tutz and Berger (2015), Section 4.2.
data(data_sim_Rasch)
data(data_sim_Rasch)
A data frame containing 500 observations on 5 variables:
Y matrix with binary 0/1 response for 20 items
x1 binary covariate 1
x2 metric covariate 1
x3 binary covariate 2
x4 metric covariate 2
Berger, Moritz and Tutz, Gerhard (2016): Detection of Uniform and Non-Uniform Differential Item Functioning by Item Focussed TreesJournal of Educational and Behavioral Statistics 41(6), 559-592.
Tutz, Gerhard and Berger, Moritz (2016): Item focussed Trees for the Identification of Items in Differential Item Functioning, Psychometrika 81(3), 727-750.
data(data_sim_Rasch) Y <- data_sim_Rasch[,1] X <- data_sim_Rasch[,-1] hist(rowSums(Y), breaks = 0:19 + 0.5) summary(X)
data(data_sim_Rasch) Y <- data_sim_Rasch[,1] X <- data_sim_Rasch[,-1] hist(rowSums(Y), breaks = 0:19 + 0.5) summary(X)
A function to estimate item focussed trees for simultaneous selection of items and variables that induce DIF (Differential Item Functioning) in dichotomous or polytomous items. DIF detection can be based on the Rasch Model (dichotomous case), the Logistic Regression Approach (dichotomous case) or the Partial Credit Model (polytomous case). The basic method of item focussed recursive partitioning in Rasch Models is described in Tutz and Berger (2015).
DIFtree(Y, X, model = c("Rasch", "Logistic", "PCM"), type = c("udif", "dif", "nudif"), alpha = 0.05, nperm = 1000, trace = FALSE, penalize = FALSE, ...) ## S3 method for class 'DIFtree' print(x, ...)
DIFtree(Y, X, model = c("Rasch", "Logistic", "PCM"), type = c("udif", "dif", "nudif"), alpha = 0.05, nperm = 1000, trace = FALSE, penalize = FALSE, ...) ## S3 method for class 'DIFtree' print(x, ...)
Y |
Matrix or Data.frame of binary 0/1 or categorical response (rows correspond to persons, columns correspond to items) |
X |
Data.frame of (not scaled) covariates (rows correspond to persons, columns correspond to covariates) |
model |
Type of model to be fitted; can be |
type |
Type of DIF to be modelled; one out of |
alpha |
Global significance level for the permutation tests |
nperm |
Number of permutations used for the permutation tests |
trace |
If true, information about the estimation progress is printed |
penalize |
If true, a small ridge penalty is added to ensure existence of model parameters; only for |
... |
Further arguments passed to or from other methods |
x |
Object of class |
The methods require 0/1 coded answers on binary items ("Rasch"
and "Logistic"
) or categorical answers on polytomous items ("PCM"
).
Items with DIF are gradually identified by recursive partitioning.
For "Rasch"
one yields a model with linear predictors
where correspond to the ability and
correspond to the covariate vector of person p.
For "Logistic"
one yields a model with linear predictors
Uniform DIF, type="udif"
where corresponds to the test score and
corresponds to the covariate vector of person p.
DIF and Non-Uniform DIF, type="dif", "nudif"
where corresponds to the test score and
corresponds to the covariate vector of person p.
For "PCM"
one yields a model with linear predictors
where correspond to the ability and
correspond to the covariate vector of person p.
Significance of each split is verified by permutation tests. The result of the permutation tests
can strongly depend on the number of permutations nperm
.
In the case of pure terminal nodes estimates of the model do not exist. If penalize=TRUE
a small ridge penalty is added during estimation to ensure existence of all parameters.
Object of class "DIFtree"
.
An object of class "DIFtree"
is a list containing the following components:
splits |
Matrix with detailed information about all executed splits during the estimation process |
coefficients |
List of estimated coefficients for items with and without DIF.
Structure of |
pvalues |
P-values of each permutation test during the estimation process |
devs |
Maximal value statistics |
crit |
Critical values of each permutation test during the estimation process |
Y |
Response matrix used in the estimation process |
X |
Model matrix used in the estimation process |
persons |
Number of persons |
items |
Number of items |
Moritz Berger <[email protected]>
http://www.imbie.uni-bonn.de/personen/dr-moritz-berger/
Berger, Moritz and Tutz, Gerhard (2016): Detection of Uniform and Non-Uniform Differential Item Functioning by Item Focussed Trees, Journal of Educational and Behavioral Statistics 41(6), 559-592.
Bollmann, Stella, Berger, Moritz & Tutz, Gerhard (2018): Item-Focussed Trees for the Detection of Differential Item Functioning in Partial Credit Models, Educational and Psychological Measurement 78(5), 781-804.
Swaminathan, Hariharan and Rogers, H Jane (1990): Detecting differential item functioning using logistic regression procedures, Journal of Educational Measurements 27(4), 361-370.
Tutz, Gerhard and Berger, Moritz (2016): Item focussed Trees for the Identification of Items in Differential Item Functioning, Psychometrika 81(3), 727-750.
plot.DIFtree
, predict.DIFtree
, summary.DIFtree
data(data_sim_Rasch) data(data_sim_PCM) Y1 <- data_sim_Rasch[,1] X1 <- data_sim_Rasch[,-1] Y2 <- data_sim_PCM[,1] X2 <- data_sim_PCM[,-1] ## Not run: mod1 <- DIFtree(Y=Y1,X=X1,model="Logistic",type="udif",alpha=0.05,nperm=1000,trace=TRUE) print(mod1) mod2 <- DIFtree(Y=Y2,X=X2,model="PCM",alpha=0.05,nperm=100,trace=TRUE) print(mod2) ## End(Not run)
data(data_sim_Rasch) data(data_sim_PCM) Y1 <- data_sim_Rasch[,1] X1 <- data_sim_Rasch[,-1] Y2 <- data_sim_PCM[,1] X2 <- data_sim_PCM[,-1] ## Not run: mod1 <- DIFtree(Y=Y1,X=X1,model="Logistic",type="udif",alpha=0.05,nperm=1000,trace=TRUE) print(mod1) mod2 <- DIFtree(Y=Y2,X=X2,model="PCM",alpha=0.05,nperm=100,trace=TRUE) print(mod2) ## End(Not run)
Visualization of trees for items with DIF identified by item focussed recursive partitioning in dichotomous or polytomous items.
## S3 method for class 'DIFtree' plot(x, item, component = "intercept", cex.lines = 2, cex.branches = 1, cex.coefs = 1, cex.main = 1, title = NULL, ...)
## S3 method for class 'DIFtree' plot(x, item, component = "intercept", cex.lines = 2, cex.branches = 1, cex.coefs = 1, cex.main = 1, title = NULL, ...)
x |
Object of class |
item |
Number of the item, for which the tree shall be plotted |
component |
Component of the model for which the tree shall be plotted;
can be |
cex.lines |
Width of branches of the tree |
cex.branches |
Size of the labels of branches of the tree |
cex.coefs |
Size of coefficients in the terminal nodes of the tree |
cex.main |
Size of the title of the tree |
title |
Optional title, which is added to the tree;
if |
... |
Further arguments passed to or from other methods |
Moritz Berger <[email protected]>
http://www.imbie.uni-bonn.de/personen/dr-moritz-berger/
Berger, Moritz and Tutz, Gerhard (2016): Detection of Uniform and Non-Uniform Differential Item Functioning by Item Focussed Trees, Journal of Educational and Behavioral Statistics 41(6), 559-592.
Bollmann, Stella, Berger, Moritz & Tutz, Gerhard (2018): Item-Focussed Trees for the Detection of Differential Item Functioning in Partial Credit Models, Educational and Psychological Measurement 78(5), 781-804.
Tutz, Gerhard and Berger, Moritz (2016): Item focussed Trees for the Identification of Items in Differential Item Functioning, Psychometrika 81(3), 727-750.
DIFtree
, predict.DIFtree
, summary.DIFtree
data(data_sim_Rasch) Y <- data_sim_Rasch[,1] X <- data_sim_Rasch[,-1] ## Not run: mod <- DIFtree(Y=Y,X=X,model="Logistic",type="udif",alpha=0.05,nperm=1000,trace=TRUE) plot(mod,item=1) ## End(Not run)
data(data_sim_Rasch) Y <- data_sim_Rasch[,1] X <- data_sim_Rasch[,-1] ## Not run: mod <- DIFtree(Y=Y,X=X,model="Logistic",type="udif",alpha=0.05,nperm=1000,trace=TRUE) plot(mod,item=1) ## End(Not run)
The function returns predictions of item parameters obtained by item focussed recursive partitioning in dichotomous or polytomous items.
## S3 method for class 'DIFtree' predict(object, item, newdata, ...)
## S3 method for class 'DIFtree' predict(object, item, newdata, ...)
object |
Object of class |
item |
Number of the item, for which the prediction shall be returned |
newdata |
New data.frame, for which the prediction shall be returned |
... |
Further arguments passed to or from other methods |
For "Rasch"
model the function returns the predicted item difficulty.
For "Logistic"
models the function returns the predicted intercept and/or slope.
For "PCM"
the function returns the predicted threshold parameters.
Moritz Berger <[email protected]>
http://www.imbie.uni-bonn.de/personen/dr-moritz-berger/
Berger, Moritz and Tutz, Gerhard (2016): Detection of Uniform and Non-Uniform Differential Item Functioning by Item Focussed Trees, Journal of Educational and Behavioral Statistics 41(6), 559-592.
Bollmann, Stella, Berger, Moritz & Tutz, Gerhard (2018): Item-Focussed Trees for the Detection of Differential Item Functioning in Partial Credit Models, Educational and Psychological Measurement 78(5), 781-804.
Tutz, Gerhard and Berger, Moritz (2016): Item focussed Trees for the Identification of Items in Differential Item Functioning, Psychometrika 81(3), 727-750.
DIFtree
, plot.DIFtree
, summary.DIFtree
data(data_sim_Rasch) Y <- data_sim_Rasch[,1] X <- data_sim_Rasch[,-1] Xnew <- data.frame("x1"=c(0,1),"x2"=c(-1.1,2.5),"x3"=c(1,0),"x4"=c(-0.2,0.7)) ## Not run: mod <- DIFtree(Y=Y,X=X,model="Logistic",type="udif",alpha=0.05,nperm=1000,trace=TRUE) predict(mod,item=1,Xnew) ## End(Not run)
data(data_sim_Rasch) Y <- data_sim_Rasch[,1] X <- data_sim_Rasch[,-1] Xnew <- data.frame("x1"=c(0,1),"x2"=c(-1.1,2.5),"x3"=c(1,0),"x4"=c(-0.2,0.7)) ## Not run: mod <- DIFtree(Y=Y,X=X,model="Logistic",type="udif",alpha=0.05,nperm=1000,trace=TRUE) predict(mod,item=1,Xnew) ## End(Not run)
The function takes an object of class "DIFtree"
and returns an useful summary
with an overiew of all executed splits during the estimation procedure.
## S3 method for class 'DIFtree' summary(object, ...) ## S3 method for class 'summary.DIFtree' print(x, ...)
## S3 method for class 'DIFtree' summary(object, ...) ## S3 method for class 'summary.DIFtree' print(x, ...)
object |
Object of class |
... |
Further arguments passed to or from other methods |
x |
Object of class |
Object of class "summary.DIFtree"
.
An object of class "summary.DIFtree"
is a list containing the following components:
stats |
Useful overview of detected DIF items, responsible variables and executed splits |
nosplits |
Total number of executed splits during the estimation procedure |
Moritz Berger <[email protected]>
http://www.imbie.uni-bonn.de/personen/dr-moritz-berger/
Berger, Moritz and Tutz, Gerhard (2016): Detection of Uniform and Non-Uniform Differential Item Functioning by Item Focussed Trees, Journal of Educational and Behavioral Statistics 41(6), 559-592.
Bollmann, Stella, Berger, Moritz & Tutz, Gerhard (2018): Item-Focussed Trees for the Detection of Differential Item Functioning in Partial Credit Models, Educational and Psychological Measurement 78(5), 781-804.
Tutz, Gerhard and Berger, Moritz (2016): Item focussed Trees for the Identification of Items in Differential Item Functioning, Psychometrika 81(3), 727-750.
DIFtree
, plot.DIFtree
, predict.DIFtree
data(data_sim_Rasch) Y <- data_sim_Rasch[,1] X <- data_sim_Rasch[,-1] ## Not run: mod <- DIFtree(Y=Y,X=X,model="Logistic",type="udif",alpha=0.05,nperm=1000,trace=TRUE) summary(mod) ## End(Not run)
data(data_sim_Rasch) Y <- data_sim_Rasch[,1] X <- data_sim_Rasch[,-1] ## Not run: mod <- DIFtree(Y=Y,X=X,model="Logistic",type="udif",alpha=0.05,nperm=1000,trace=TRUE) summary(mod) ## End(Not run)